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Stabiltty of rteady motions of Chaplygin‘r nork&swmlc system8 abjected to 
the action of potsntial and df@ative forcer and wg ignorabk coord- 
inates is investigated. A survey of available results in this field appears in [l$ 

l, Let us consider a scorns ~c system subjected to forces ad- 
mittingaforcefkmctioa, Wed~~~~~r~~~~~by Qz$ - - -, qn, 
and assume that the gewxalized velocities ql’, . . ., q,,* are linked by n - rn 
nonintcgrabb~ retaMp of the form 

htuning that the system can be subjected to dissipative forcq detivativa of the 
~ayleigb functfon F wboae coefflcienti are independent of s* and that the kinetic 
energy T, the farce functictn U, and the cdficieatr of links $, arc a3so 
independent d qlr, we repssex& the equatfors of motion of the system in Chaply- 
&n*s form 

d 6P sw++uI) + (1.2) 
dtaq;= a% 

where 

an obtained from 2T, 2F and dTf &,,*by the eUmZnatfou of qp’ Ursng form&~ (1.11. 
We~~~~~c~~~ qa(a=I+L l l ., FTi) areigimrableco- 

ozdiaatesfn~murningofthedeffnfttoninc2jwhichgenuauztt the deflnitim in 
[31. i.ew coord.i=ter qa do not explicitly appear in EC& (I.. 2) where only their 
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wderations arid, possibly, velocities are prcaent. More exactly, we assume that 

Kr* 
n 

w* 
a(l,= 0, -g&=09 -Jg==o,& c eppywa=o 

w=-+1 
(a= k+l,... ,m; p,r,s==l,..., 7n) 

(1.3) 

We ii&her assume that 

The first group of conditions in (1.4) impliar the absence of dimWarn with reaptct 
tocyc~v~aadtturroccaad~~kxfrturctofan(At-~~di~ 
manifold of steady motienh obvidy, ryrtsm (t 21 A-nits wvdsr cxWWm8 (1.3) 
and (1.4) the solution 

4t = qro, gt* = 0 (i = 1,. * ‘, I); 

qa l = qao’ (a = 1 $-I, . . ., m) 

0.5) 

where the m co&ants qto and qao* satisfy thesystemof I<m 45quations 

Let us consider an arbitrary point of manifold (l.6) and formulate the problem of 
stability of solution (1.5) of system (1.2) with respect to pertwbathns of variables 

qil it’ and qa’- 

2. We set 

Xi = 41 - qio (i = 1, - * ‘, 0, y, = q@* - 0, (oa t=: qa;, 

cz = I + 1,. . ., m) 

and write the equations of pezturbed motion as 
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in which anwJ_ev;ry+~re below i, j, h = 1, l l *,I; a, $9 Y = 1 + 1, ’ . .V * 

and IL , l 
. ., n. All coefficients of system (2.1) are calculated for 

41 = QfO + 51 ’ and symbol A is defined as followsj 

*L\g = 9 ho + 4 - qJ (qo) 

when?. the suptscxipt O indicates that the particular quantity is cakulated for 2i 

= 0 (in initial variables for qt = qfo). 
The charact&stic eqution of system (2.2) has m - I zero roots with the remain- 

ing 21 rootssathfying the equation 
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when at least one of the roots of Eq. 
Sokt&%% (I.5) is mble. 

(2.3) lies in the right&and half-pw 
Ifs howuve& aJl zoots of Ee (2.3) are in the le$Mi%nd 

half-plane, we have condition, of tRe critical case of sevcJAp1 zero rook We shall 
show that the particular ca8e of several zero mats occurs in thtrr problem. 

3. mtions (2.2) have obvioutly m - I linear integrals 

We sub&N&e vsrfables z deBned by form&s (3.1) for variables y , and write 
down the system of equat&ns of pert&e4 matian in vadables x, x0:‘, and z after 
resolvtng system (2.1) for Ngber derivatives. We then obtain 

. 
q = Xi’ (3.2) 

~&A$ = &j = 0 
8 

{a # j) 

Since the expanaion of functfont tD1 (x, 2) may contain texms that are Unear 
withrespectto 2, itisncrctrwytocerryoutthc tsa&&nation of variable& which 
Wcruld~~the~to~fotmthatitrtsmbudfarthQanolydrofthecdtdcal 
case of severe1 zero roots. Fat &#,8 we cofsidcr SIC system of equations 

q’ = 0, $ A*j (X) Co, (XV 2) + 7 Xiyij (Xs X’* 2) = 0 

whose solntion for 5 and 2’ yields 

Xi ’ = 0, xi = Xf (z) 

wheze functions Xt satisfy the system of equations 



Stability of steady motions of Cbaplygin’s systems 867 

Q (X9 4 = 0 @et I &j II # 0) 

whare ablution is a priori known to exist, since by assumption all roots of EQ. (2.3) lie 
in the left-hand half-plane. 

We carry cut the change of variables 

X[ = Xf (2) + ui, xt’ = Vf 

and w&e down the system ofequationsof perturbed motion III vadables u, V, z . We 
have 

l&i* = JL (u, @ + ui (u* v, 2) (3.3) 

Vf’ = J%+i (u, VI + vi: (w v, 2) 

ab=~[~~~~(X(~)+~)l~~(X(z)+~)+ 
X Vjyccj @ (2) + 4 V9 2) i 

where Lk(u,v) (k= 1, . . .) 21) are linear forms of vadables u. and v’, and 
the expansfons of fimctions U, and v, in powers of u, v, and 2 be$n with terms 
of order not lower than the second. 

When u=v= 0 then obviously tie right-hand sides of the last m - l 
equations of system (3.3) are identically zero, consequently, also UI (0.0, z) s 
V, (0, 0, 2) = 0 c4,5E, 

Thus the statement that when all roots of Eq, (2.3) lie in the left-hand half-plane, 
the particular case of the critical case of several zero roots is realized, is proved. 
Ccnsequeutly, when all roots of Ee (2.3) are in th left-hand half-plane, then solution 
(I.. 5) of system (1.2) is stable (but not asymptotfcally). Any perturbed motion fairly 
clcae to the unpertwbed tends to one of the possible steady (but not to the unperturbed) 
motions of the form (I.. 5) that belong to the manifold (1.6) when t + oo . 

4. Equation (2.3) can be reduced by elementary transformations to the form 

det 11 A3LZ - (G + D)h - (C + E) II = 0 (4.1) 

which is the characteristic equation for the system 

Aw” =Gw’+Dw’+Cw$Ew 

w = colon (wl, . . ., wl), A = 11 ati0 - .$ip w&lx~~” II 
G + D = II gij” + 4j” - 
G’ 

$I hoLB (at~“%o’+ ujac”~if37 II 
C-G, D’=D ’ 

C+E=IIcij”+e~~“+~~~~~~gDv~o(I, C’=C, E’=-E 
9 

(4.2) 
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where h,~* a~e~~~~~~~inve~~~~ !Ifz,~* 11 {a, p = I + 

1 * = * *, m) and the prime indicatea tmmposition, 
Matrix A is evidently of positive de&rite quadratic form, i. e. it is possible to 

consider system (4.2) as consfsting of equations of motion of a mechanical system sub- 
jeoted to the fol&ving types of kwcee potential Cw, pcWiona1 rmmmmmtive 

Ew, gyroscopic Gw’, and dissipative and aaxierating I)w* . The following 
statement is valid on the basis of the above exp&Uon. 

The steady motion (1.5) of system (1.2) is stable (unttable) with respect to 
variables Qi - Qto, qi’, and qa’ - qmo when the zero equilibrium position of 
system (4.2) is asymptottcally stable (exponentially unstable). 

A number os thconnu on stability or fn#tabiZfty of steady motions of ~hap~ygin% 
Nixon systems w be obtained using the last statement and rem&s of inveatiga- 
tions of systems of the form (4.2) [6 -IQ as was done earlier in imertfirgion of the 
stability of equi%tbrium positions of no&&onomi C systems [ll]. 

When G = 0 alltheoremsin[ll]arevalid, andwhen G+ 0 and ErO 
Theorems 3.1, 3.3, aad 3.4 in @l] are valid, WhlLc Theorem 3.2 is not Finally, 
when G qk 0 and E r$e O , the fonowtng staWa& are valid, 

I’, If function 2v = -w’Cw has a urn at the co&d&&e origin and 
II = -6D,, where D, is the matdx of positive defintte form, then for fairly 

large 6 > 0 the steady motion (I.. 5) of system (l. 2) is stable. 
2”. When one of the foua*ttag cond#Sw fs whWkd: 
a) D1:O ~q. (4,l)contafnraddpowersof h; 

$ ~~-~ + E) U,C 0; and 
e= -w (l~*~~-~ _t c)w ha8 B burn at the coordinate 

origin, the steady motion (1.5) of system (1.2) fs rms@bl% 
R e m a r k . Since (qtb, q*,,‘) is an arbitrary point of the ma&M Of h%ad’y 

moiiozu (1.6). the obta&w4l wult8 ma& p&b&k the fnv@lgMM Of all m0tions of 
the tnput system (since all weffbtmb of qhm (&2> Wd on gto, and q=e’). 
If the solution of system (t 6) fSn be represented in pammetric foErt% fOr in@@n% m 
the form 

4aa’ = 0, (a = 2 + 1, . . *, m); QfO = ‘PI (0) (i = 1, . . ., I) (4.3) 

then, by substitutfng (4.3) into the formul&s for coeffi&ents of matrices Of qstun (4.2) 
and using tfte obtained msultr it is possible to separate on surface (4.3) regions of stabre 
or unstable steady motlanr. 

5. We illustrate the above result8 oa the example of investigation Of stability of 
steady motion of a tows on an absolutely rough horizontal surface. 

We define the motions of the tow by the Carte&an coordinates 2 and y of the 
centet of mass projection on the hortzattal plane and by B~lts’s =gW e,*, and 

rF* We denote by m the tow mass, by A and B tbc equatorial and poIar 
moments of inertia, by r the r&u of the tams cm@ smUa& and by R + I^ the 
radius of the equatorial circk, in that notation the Lagrange function and the system 
relation egiatfom that &&ne the absence of slip at the point of tow3 contact with the 
plane are of the form 
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L = Yarn ($* + $7 + Va (A + mR* sin* 8)W’ + Va (d coi9 6 -+ 
B sin2 Cl)+‘* + lfoBrp’a - Bcp’$i sin 0 - mgR cos 0 

x’ = (R + r cos 0)cos gip’ - R sin 0 cos $f$j’ - (R cos 8 + 
r) sin $8 

Y * = (R + r cos B)sin t#qi* - R sin 0 sin \Etll’ -j- (R cos 8 + 
r)eos q&r. 

mgR &,I a - IB co9 a + m (R 00s a + r)(R + t cos a)loQ -I- (‘*‘I 
[(R - A)c0s a + mR (R cos dt + r)lsin a@ = 0 

fA + m (Rd + 2Rr cos a + fl)lw** -I- Hw* -I- J (Ka’ i- 
LSh + Mo” + N)w = 0 

J = [Al3 + Am (R + r cos a)* $- Bd sin’ af-” cos”” a > 0 
K = f~ cos a + m (R cos cz + r)(R C r cos a)lfAm (R + 

r cos a)@R -f- r cos a) + AB (1 + sin* a) + Bm sin* a (r” - 

IT) - B2 sin’ al - I(23 - A + ~~)cos 2a + mRr cosalfd B + 
Am(R$-rcosa)*+BmrPsin*alcosa-22(R-AA 
aR”)cosa~mRrl~-B”+~R+2Am(R+rcosa)~-- 
Rm (rP; + Rr cos a + P cos 2a)hW a 

L = IB cos a + m (R cos a + r)(R + r co9 a)JIAm (2P f 
5Rr cos IX + 3$ co@ a) + AB + Bm9 (3 sin2 a - l)]sin a - 
IB+m(Ra+2Rrcosa+I5)1[--ABcosa+Am(R+ 
r cos a)2 cos a + ZIP cos a + Bm (2RB ~0s a + 2Rr + 
P sina a cos a)Isin a, M =BfB+m(iFiB+ZRrcosa+ 
P-)IIB cos cc + m (R cos a + r)(R + r cos a)3 

Iv== -mgR MB + Am (R + r cos a)” + Bm+ sin2 aJco@ a 
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is asymptotically stable (exponentially unstable). This is the equation of motion of a 
mechanical system with a single degree of freedom ubjected to the action of dissipatp 
ive and potential forces. From this we immediately obtain the couditiou of stability 

(instability) 

RQa+LQo+Moa+N>O ((0) (5.4) 

of steady motion (5.1) in the form of the minimum (absence of minimum) of potential 
energy of system (5.3). 

When r = 0 conditfon (5.4) becomu the condition of stability of the steady 
motionofahoop(see, e.g., &3J), when a -0 and o = ()itbecontattbecond- 
i~ofstrMlftyofataarrpiMinssboatthcvuti~atcoadrntaneubrvttodty, 
andwhen a = 0 and Q = 0 it becomes the carditton of stability of uniform 
rolling of a tams along a straight line (see, e. g., 83). 
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