ON THE STABILITY OF STEADY MOTIONS OF CHAPLYGIN'S
 NONHOLONOMIC SYSTEMS

PMM Vol, 42, No. 5, 1978, pp 801-807
A. V. KARAPETIAN
(Moscow)
(Received November 14, 1977)
Stability of steady motions of Chaplygin's nonholonomic systems mubjected to the action of potential and dissipative forces and posessing ignorable coordinates is investigated. A survey of available results in this field appeass in [1].

1. Let us consider a scleronomous nonholonomic system subjected to forces admitting a force function. We denote the generalized coordinater by q_{1}, \ldots, q_{n}, and assume that the generalized velocities $q_{1}{ }^{*}, \ldots, q_{n}{ }^{*}$ are linked by $n-m$ nonintegrable relationships of the form

$$
\begin{equation*}
q_{\mu}^{*}=\sum_{r=1}^{m} b_{\mu r}(q) q_{r}^{*} \quad(\mu=m+1, \ldots, n) \tag{1.1}
\end{equation*}
$$

Assuming that the system can be subjected to disuipative forces, derivatives of the Rayleigh function F whose coefficients are independent of q_{μ}, and that the kinetic energy T, the force function U, and the coefficients of liniss $b_{\mu r}$ are also independent of g_{μ}, we represent the equations of motion of the syatem in Chaplygin's form

$$
\begin{align*}
& \frac{d}{d t} \frac{\partial T^{*}}{\partial q_{r}^{+}}=\frac{\partial\left(T^{*}+U\right)}{\partial q_{r}}+ \tag{1,2}\\
& \quad \sum_{p, z=1}^{m} q_{s}^{*} q_{p}^{*} \sum_{\mu=m+1}^{n} \theta_{\mu p} v_{\mu r s}-\frac{\partial F^{*}}{\partial q_{r}^{*}} \quad(r=1, \ldots, m) \\
& \left(v_{\mu r s}=\frac{\partial b_{\mu r}}{\partial q_{s}}-\frac{\partial b_{\mu s}}{\partial q_{r}}\right)
\end{align*}
$$

where

$$
2 T^{*}=\sum_{r, s=1}^{m} a_{r} q_{r}^{\circ} q_{s}^{\dot{*}}, \quad 2 F^{*}=\sum_{r, s=1}^{m} f_{r s} q_{r} \dot{q}_{s}^{*}, \quad \theta_{\mu}=\sum_{p=1}^{m} \theta_{\mu p} q_{p}
$$

are obtained from $2 T, 2 F$ and $\partial T / \partial q_{\mu}{ }^{\circ}$ by the elimination of $q_{\mu}{ }^{\circ}$ using formulas (1.1).
We assume that the coordinates $q_{\alpha}(\alpha=l+1, \ldots, m)$ are ignorable coordinates in the meaning of the definition in [2] which generalizes the definition in [3] i. e. coordinates q_{α} do not explicitly appear in Eqs. $(1,2)$ where only their
accelerations and, possibly, velocities are present. More exactiy, we assume that

$$
\begin{align*}
& \frac{\partial T^{*}}{\partial q_{\alpha}}=0, \quad \frac{\partial U}{\partial q_{\alpha}}=0, \quad \frac{\partial F^{*}}{\partial q_{\alpha}}=0, \frac{\partial}{\partial q_{\alpha}} \sum_{\mu=m+1}^{n} \theta_{\mu p} v_{\mu r s}=0 \tag{1.3}\\
& (\alpha=l+1, \ldots, m ; p, r, s=1, \ldots, m)
\end{align*}
$$

We further assume that

$$
\begin{equation*}
\frac{\partial F^{*}}{\partial q_{\alpha}^{*}}=0, \quad \sum_{\mu=n+1}^{n} \theta_{\mu \nu} v_{\mu \alpha \beta} \equiv 0 \quad(\alpha, \beta, \gamma=l+1, \ldots, m) \tag{1.4}
\end{equation*}
$$

The first group of conditions in (1.4) implies the absence of disipation with respect to cyclic velocities and the second enmares the existence of an ($m-l$)-dimensional manifold of steady motions, Obviously, system (1.2) admits under conditions (1.3) and (1.4) the solution

$$
\begin{align*}
& q_{i}=q_{i 0}, \quad q_{i}=0 \quad(i=1, \ldots, l) \tag{1.5}\\
& q_{\alpha}^{*}=q_{\alpha 0}^{*} \quad(\alpha=l+1, \ldots, m)
\end{align*}
$$

where the m constants $q_{i 0}$ and $q_{\alpha 00^{*}}$ satisfy the system of $l<m$ equations

$$
\begin{equation*}
\frac{\partial U}{\partial q_{i}}+\sum_{a_{0} ;}^{m} q_{\alpha} \dot{q} q_{\beta} \cdot\left[\frac{1}{2} \frac{\partial q_{a \beta}}{\partial q_{i}}+\sum_{\mu=m+1}^{n} \theta_{\mu \beta} v_{\mu+\alpha}\right]=0 \quad(i=1, \ldots, l) \tag{1.6}
\end{equation*}
$$

Let us consider an arbitrary point of manifold (1,6) and formulate the problem of stability of solution (1.5) of system $(1,2)$ with reapect to perturbations of variables $q_{i}, q_{i}{ }^{*}$ and $q_{a}{ }^{*}$.
2. We set

$$
\begin{aligned}
& x_{i}=q_{i}-q_{i 0} \quad(i=1, \ldots, l), \quad y_{\alpha}=q_{\alpha}^{\cdot}-\omega_{\alpha} \quad\left(\omega_{\alpha}=q_{\alpha 0}\right. \\
& \alpha=l+1, \ldots, m)
\end{aligned}
$$

and write the equations of perturbed motion as

$$
\begin{align*}
& \sum_{j} a_{i j} x_{j}^{\cdot} \cdot+\sum_{\beta} a_{i \beta} y_{\beta}^{\prime}=\sum_{j, h} x_{j}^{*} x_{h}^{*} B_{i j h}+\sum_{j, \beta} x_{j}^{\prime}\left(\omega_{\beta}+y_{\beta}\right) B_{i j \beta}+ \tag{2.1}\\
& \sum_{\beta, \gamma} \omega_{\beta} \omega_{\gamma} \Delta B_{i \beta v}+\sum_{\beta, \gamma}\left(\omega_{\beta} y_{\gamma}+\omega_{\gamma} y_{\beta}+y_{\beta} y_{\gamma}\right) B_{i \beta \gamma}+ \\
& \Delta \frac{\partial U}{\partial q_{i}}-\sum_{j} f_{i j} x_{j}^{\cdot} \\
& \sum_{j} a_{\alpha j} x_{j}{ }^{\prime \prime}+\sum_{\beta} a_{\alpha \beta} y_{\beta}^{\cdot}=\sum_{j, h} x_{j} x_{h} \cdot B_{\alpha j h}+\sum_{j, \beta} x_{j}{ }^{\prime}\left(\omega_{\beta}+y_{\beta}\right) B_{\alpha j \beta}
\end{align*}
$$

in which and everywhere below $i, j, h=1, \ldots, l ; \alpha, \beta, \gamma=l+1, \ldots, m$ and $\mu=m+1, \ldots, n$. All coefficients of system (2.1) are calculated for $q_{i}=q_{i 0}+x_{i}$, and symbol Δ is defined as follows:

$$
\begin{aligned}
& \Delta \psi=\psi\left(q_{0}+x\right)-\psi\left(q_{0}\right) \\
& B_{i j h}=\frac{1}{2} \frac{\partial a_{j h}}{\partial q_{i}}-\frac{\partial a_{i j}}{\partial q_{h}}+\sum_{\mu} \theta_{\mu h} v_{\mu i j} \\
& B_{i j \beta}=\frac{\partial a_{j \beta}}{\partial q_{i}}-\frac{\partial a_{i \beta}}{\partial q_{j}}+\sum_{\mu}\left(\theta_{\mu \beta} v_{\mu i j}+\theta_{\mu j} v_{\mu i \beta}\right) \\
& B_{i \beta \gamma}=\frac{1}{2} \frac{\partial a_{\beta \gamma}}{\partial q_{i}}+\sum_{\mu} \theta_{\mu \beta} v_{\mu \nu \gamma} \\
& B_{\alpha j h}=\sum_{\mu} \theta_{\mu h} v_{\mu \alpha j}-\frac{\partial a_{\alpha j}}{\partial q_{h}} \\
& B_{\alpha j \beta}=\sum_{\mu}\left(\theta_{\mu \beta} v_{\mu \alpha j}+\theta_{\mu j} v_{\mu \alpha \beta}\right)-\frac{\partial a_{\alpha \beta}}{\partial q_{j}}
\end{aligned}
$$

The fiest approximation equations in the neighborhood of solution (1.5) aseumes the form

$$
\begin{align*}
& \sum_{j} a_{i j}{ }^{0} x_{j}^{\prime \prime}+\sum_{\beta} a_{i \beta}{ }^{\circ} y_{\beta}{ }^{\circ}=\sum_{j}\left(g_{i j}{ }^{\circ}+d_{i j}{ }^{\circ}\right) x_{j}{ }^{\circ}+ \tag{2,2}\\
& \sum_{j}\left(c_{i j}{ }^{0}+e_{i j}{ }^{\circ}\right) x_{j}+\sum_{\beta} u_{i \beta}{ }^{\circ} y_{\beta} \\
& \sum_{j} a_{\alpha j}{ }^{\circ} x_{j}{ }^{*}+\sum_{\beta} a_{\alpha \beta}{ }^{\circ} y_{\beta}{ }^{*}=\sum_{j} v_{\alpha j}{ }^{\circ} x_{j}^{*} \\
& g_{i j}+d_{i j}=\sum_{\beta} \omega_{\beta} B_{i j \beta}-f_{i j} ; \quad g_{i j}=-g_{j i}, \quad d_{i j}=d_{j i} \\
& c_{i j}+e_{i j}=\frac{\partial 2 U}{\partial q_{j} \partial q_{i}}+\sum_{\beta, \gamma} \omega_{\beta} \omega_{p} \frac{\partial B_{i \beta \gamma}}{\partial q_{j}} ; \quad c_{i j}=c_{j i}, \quad e_{i j}=-e_{j i} \\
& u_{i \alpha}=\sum_{\beta} \omega_{\beta}\left(B_{i \beta \alpha}+B_{i \alpha \beta}\right), \quad v_{\alpha j}=\sum_{\beta} \omega_{\beta} B_{\alpha j \beta}
\end{align*}
$$

where the superscript ${ }^{\circ}$ indicates that the particular quantity is calculated for x_{i} $=0$ (in initial variables for $q_{i}=q_{i 0}$).

The characteristic eqution of system $(2,2)$ has $m-l$ zero roots with the remaining $2 l$ roots satisfying the equation

$$
\left.\operatorname{det} \| \begin{array}{cc}
\left\|a_{i j}^{\circ} \lambda^{2}-\left(g_{i j}^{\circ}+d_{i j}{ }^{\circ}\right) \lambda-\left(c_{i j}^{\circ}+e_{i j}{ }^{\circ}\right)\right\| & \left\|a_{i \beta}{ }^{\circ} \lambda-u_{i \beta}{ }^{\circ}\right\| \tag{2.3}\\
\left\|a_{a j}^{\circ} \lambda-v_{a j}^{\circ}\right\| & \left\|a_{\alpha \beta}^{\circ}\right\|
\end{array} \right\rvert\,=0
$$

When at least one of the roots of Eq. (2.3) lies in the right-hand half-plane, solution (1.5) is unstable. If, however, all roots of Eq. (2.3) are in the left-hand half-plane, we have conditions of the critical case of several zero roots. We shall show that the particular case of several zero roots occurs in this problem.
3. Equations (2.2) have obviously $m-l$ linear integrals

$$
\begin{equation*}
\sum_{j} a_{\alpha j}^{\circ} x_{j}^{*}+\sum_{\beta} a_{\alpha \beta}^{\circ} y_{\beta}-\sum_{j, B} x_{j} \omega_{\beta} B_{\alpha j \beta}^{\circ}=z_{\alpha} \quad\left(z_{\alpha}=\text { const, } \alpha=l+1, \ldots, m\right) \tag{3.1}
\end{equation*}
$$

We substitute variables z defined by formulas (3.1) for variables y, and write down the system of equations of perturbed motion in variables x, x^{*}, and z after resolving system (2.1) for higher derivatives. We then obtain

$$
\begin{align*}
& x_{i}^{*}=x_{i}^{\prime} \tag{3,2}\\
& x_{i}^{\prime}=\sum_{j} A_{i j}(x) \Phi_{j}(x, z)+\sum_{j} x_{j}^{\prime} \Psi_{i j}\left(x, x^{\prime}, z\right) \\
& z_{c^{*}}=\sum_{j}\left(\sum_{z} a_{\alpha, 0}^{\circ} A_{3 j}(x)\right) \Phi_{j}(x, z)+\sum_{j} x_{j}^{\prime} \Psi_{\alpha j}\left(x, x^{\prime}, z\right)
\end{align*}
$$

where $A_{r s}$ are elements of the matrix inverse of matrix $\left\|a_{r s}\right\|(r, s,=1, \ldots, m)$; expanation of functions Φ_{i} in powers of x, and z, and of functions $\Psi_{a j}$ in powers of x, x^{\prime}, and z : beginning with terms of onder not lower than the fitut, and functions $\Psi_{i j}{ }^{\circ}$ are generally not equal zero. Functions $\Phi_{i}, \Psi_{i j}$ and $\Psi_{a j}$ are not presented explicitly owing to their unwieldiness. Note that expaneions of the righthand sides of the last $m-l$ equations of system (3.2) begins with terms of onder not lower than the second, since

$$
\sum_{\delta} a_{a z a}^{\circ} A_{3 j}^{\circ}=\delta_{a j}=0 \quad(\alpha \neq j)
$$

Since the expansion of functions $\Phi_{i}(x, z)$ may contain terms that are linear with respect to z, it is necemary to carry out the transformation of variables, which would reduce the system to the form that is standard for the analysis of the critical case of several zero roots. For this we consider the system of equations

$$
x_{i}^{\prime}=0, \sum_{j} A_{i j}(x) \Phi_{j}(x, z)+\sum_{j} x_{j}^{\prime} \Psi_{i j}\left(x, x^{\prime}, z\right)=0
$$

whose solution for x and x^{\prime} yields

$$
x_{i}^{\prime}=0, \quad x_{i}=X_{i}(z)
$$

where functions X_{t} satisfy the system of equations

$$
\Phi_{i}(X, z)=0 \quad\left(\operatorname{det}\left\|A_{i j}\right\| \neq 0\right)
$$

whose solution is a priori known to exist, since by assumption all roots of Eq. (2,3) lie in the left-hand half-plane.

We carry out the change of variables

$$
x_{i}=X_{i}(z)+u_{i}, \quad x_{i}^{\prime}=v_{i}
$$

and write down the system of equationsof perturbed motion in variables u, v, z. We have

$$
\begin{align*}
& u_{i}^{*}=L_{i}(u, v)+U_{i}(u, v, z) \tag{3.3}\\
& v_{i}^{*}=L_{l+i}(u, v)+V_{i}(u, v, z) \\
& z_{\alpha}^{\bullet}=\sum_{j}\left[\sum_{s} a_{\alpha \alpha_{s}}^{\circ} A_{s j}(X(z)+u)\right] \Phi_{j}(X(z)+u)+ \\
& \sum_{j} v_{j} \Psi_{\alpha j}(X(z)+u, v, z)
\end{align*}
$$

where $L_{k}(u, v)(k=1, \ldots, 2 l)$ are linear forms of variables u, and v^{\prime}, and the expansions of functions U_{i} and V_{i} in powers of u, v, and z begin with terms of order not lower than the second.

When $u=v=0$ then obviously the right-hand sides of the last $m-l$ equations of system (3.3) are identically zero, consequently, also $U_{i}(0,0, z) \equiv$ $V_{i}(0,0, z) \equiv 0[4,5]$

Thus the statement that when all roots of Eq. $(2,3)$ lie in the left-hand half-plane, the particular case of the critical case of several zero roots is realized, is proved. Consequently, when all roots of Eq. (2,3) are in th left-hand half-plane, then solution (1,5) of system (1, 2) is stable (but not asymptotically). Any perturbed motion fairly close to the unperturbed tends to one of the possible steady (but not to the unperturbed) motions of the form (1,5) that belong to the manifold (1,6) when $t \rightarrow \infty$.
4. Equation (2.3) can be reduced by elementary transformations to the form

$$
\begin{equation*}
\operatorname{det}\left\|A \lambda^{2}-(G+D) \lambda-(C+E)\right\|=0 \tag{4.1}
\end{equation*}
$$

which is the characteristic equation for the system

$$
\begin{align*}
& A w^{\circ}=G w^{\circ}+D w^{\circ}+C w+E w \tag{4.2}\\
& w=\operatorname{colon}\left(w_{1}, \ldots, w_{l}\right), \quad A=\left\|a_{i j}^{\circ}-\sum_{\alpha, \beta} a_{i \beta}{ }^{\circ} h_{\beta \alpha}^{\circ} a_{j \alpha^{\circ}}^{\circ}\right\| \\
& G+D=\left\|g_{i j}^{\circ}+d_{i j}^{\circ}-\sum_{\alpha, \beta} h_{\alpha \beta}\left(a_{i \beta}{ }^{\circ} v_{j \alpha}^{\circ}+a_{j \alpha^{\circ}}^{\circ} u_{i \beta}\right)\right\| \\
& G^{\prime}=-G, \quad D^{\prime}=D \\
& C+E=\left\|c_{i j}^{\circ}+e_{i j}^{\circ}+\sum_{\alpha, \beta} h_{\alpha \beta}^{\circ} u_{i \beta}^{\circ} v_{j \alpha}^{\circ}\right\|, \quad C^{\prime}=C, \quad E^{\prime}=-E
\end{align*}
$$

where $h_{\alpha \beta}{ }^{\circ}$ are elements of the matrix inverse of matrix $\left\|a_{\alpha \beta}{ }^{\circ}\right\|(\alpha, \beta=l+$ $1, \ldots, m$) and the prime indicates transposition,

Matrix A is evidently of positive definite quadratic form, i. e. it is possible to consider system (4.2) as consisting of equations of motion of a mechanical system subjected to the following types of forces: potential $C w$, positional nonconservative
$E w$, gyroscopic $G w^{*}$, and dissipative and accelerating $D w^{\circ}$. The following statement is valid on the basis of the above exporition.

The steady motion (1.5) of system (1.2) is stable (unstable) with respect to variables $q_{i}-q_{i 0}, q_{i}{ }^{*}$, and $q_{a}{ }^{*}-q_{\alpha 0^{*}}$ when the zero equilibrium potition of system (4.2) is asymptotically stable (exponentially unstable).

A number os theorems on stability or instability of steady motions of Chaplygin's nonholonomic systems can be obtained using the last statement and results of investigations of systems of the form (4.2) [6-10], as was done earlier in investiagion of the stability of equilibrium ponitions of nonholonomic systems [11].

When $G \equiv 0$ all theorems in $[11]$ are valid, and when $G \equiv 0$ and $E \equiv 0$ Theorems 3.1, 3.3, and 3.4 in [11] are valid, while Theorem 3.2 is not Finally, when $G \neq 0$ and $E \neq 0$, the following statements are valid.
1°. If function $2 V=-w^{\prime} C w$ has a minimum at the coordinate origin and $D=-\delta D_{*}$, where D_{*} is the matrix of positive definite form, then for fairly large $\delta>0$ the steady motion (1.5) of system (1.2) is stable.
2°. When one of the following conditions is satisfied:
a) $D \equiv 0$ Eq. (4.1) contains odd powers of λ;
b) $\operatorname{det}\|-(C+E)\|<0$; and
c) function $2 H_{0}=-w^{\prime}\left(1 / 4 G A^{-1} G+C\right) w$ has a maximum at the coordinate origin, the steady motion (1.5) of sytem (1.2) is unstable.

Remark. Since $\left(q_{t 0}, q_{\alpha 0^{\circ}}\right)$ is an arbitrary point of the manifold of steady motions (1.6), the obtained remits make pontible the invertigation of all motions of the input system (since all coefficients of system (4.2) depend on $q_{t 0}$, and $q_{\alpha 0^{\circ}}$). If the solution of system (1.6) can be represented in parametric form, for instance, in the form

$$
\begin{equation*}
q_{\alpha 0^{\circ}}=\omega_{\alpha} \quad(\alpha=l+1, \ldots, m) ; \quad q_{i 0}=\varphi_{i}(\omega) \quad(i=1, \ldots, l) \tag{4,3}
\end{equation*}
$$

then, by substituting (4.3) into the formulas for coefficients of matrices of system (4.2) and using the obtained results it is possible to separate on surface (4.3) regions of stable or unstable steady motions.
5. We illustrate the above results on the example of investigation of stability of steady motion of a torus on an absolutely rough horizontal surface.

We define the motions of the torus by the Carteaian coordinates x and y of the center of mass projection on the horizontal plane and by buler's angles θ, ψ, and
φ. We denote by m the torut mass, by A and B the equatorial and polar moments of inertia, by r the radus of the torus cros section, and by $R+r$ the radius of the equatorial circle. In that notation the Lagrange function and the system relation equations that define the abmence of slip at the point of toms contact with the plane are of the form

$$
\begin{aligned}
& L=1 / 2 m\left(x^{* 2}+y^{\circ}\right)+1 / 2\left(A+m R^{2} \sin ^{2} \theta\right) \theta^{\circ 2}+1 / 2\left(A \cos ^{2} \theta+\right. \\
& \left.B \sin ^{2} \theta\right) \psi^{* 2}+1 / 2 B \varphi^{\circ}-B \varphi^{\circ} \psi^{*} \sin \theta-m g R \cos \theta \\
& x^{*}=(R+r \cos \theta) \cos \psi \varphi^{\circ}-R \sin \theta \cos \psi \psi^{*}-(R \cos \theta+ \\
& r) \sin \psi \theta^{\circ} \\
& y^{*}=(R+r \cos \theta) \sin \psi \varphi^{\circ}-R \sin \theta \sin \psi \psi^{*}+(R \cos \theta+ \\
& r \cos \psi \theta^{\circ} .
\end{aligned}
$$

$$
\begin{align*}
& \text { Assuming that the system can be subjected to the action of distipative forces, } \\
& \text { derivatives of the Rayleigh function } F=1 / 2 H \theta^{-3}(H=\text { const }>0) \text {, we can readily } \\
& \text { show that } \psi \text { and } \varphi \text { are ignorable coordinater in the sense of the definition (1.3) } \tag{1.3}\\
& \text { and (1.4). Hence the input system can perform steady motions of the form } \\
& \qquad \theta=\alpha, \varphi^{*}=\omega, \psi^{*}=\Omega \tag{5.1}\\
& \text { with the three constants } \alpha, \omega \text { and } \Omega \text { satisfying the single equation } \\
& \qquad m g R \sin \alpha-[B \cos \alpha+m(R \cos \alpha+r)(R+r \cos \alpha)] \omega \Omega+ \tag{5.2}\\
& \quad[(B-A) \cos \alpha+m R(R \cos \alpha+r)] \sin \alpha \Omega^{2}=0
\end{align*}
$$

Applying these remults to an arbitrary point of the manifold (5.2) we find that the steady motion (5.1) is stable (unstable), if the trivial solution of equation

$$
\begin{gather*}
{\left[A+m\left(R^{2}+2 R r \cos \alpha+r^{2}\right)\right] w^{\bullet}+H w^{*}+J\left(K \Omega^{2}+\right.} \tag{5.3}\\
\left.L \Omega \omega+M \omega^{2}+N\right) w=0 \\
J=\left[A B+A m(R+r \cos \alpha)^{2}+B m r^{2} \sin ^{2} \alpha\right]^{-1} \cos ^{-1} \alpha>0 \\
K=[B \cos \alpha+m(R \cos \alpha+r)(R+r \cos \alpha)][A m(R+ \\
r \cos \alpha)(2 R+r \cos \alpha)+A B\left(1+\sin ^{2} \alpha\right)+B m \sin ^{2} \alpha\left(r^{2}-\right. \\
\left.\left.R^{2}\right)-B^{2} \sin ^{2} \alpha\right]-\left[\left(B-A+m R^{2}\right) \cos 2 \alpha+m R r \cos \alpha\right][A B+ \\
\left.A m(R+r \cos \alpha)^{2}+B m r^{2} \sin ^{2} \alpha\right] \cos \alpha-2[(B-A+ \\
\left.\left.m R^{2}\right) \cos \alpha+m R r\right]\left[-B^{2}+2 A B+2 A m(R+r \cos \alpha)^{2}-\right. \\
\left.B m\left(R^{2}+R r \cos \alpha+r^{2} \cos 2 \alpha\right)\right] \sin ^{2} \alpha \\
L=[B \cos \alpha+m(R \cos \alpha+r)(R+r \cos \alpha)]\left[A m \left(2 R^{2}+\right.\right. \\
\left.\left.5 R r \cos \alpha+3 r^{2} \cos ^{2} \alpha\right)+A B+B m r^{2}\left(3 \sin ^{2} \alpha-1\right)\right] \sin \alpha- \\
{\left[B+m\left(R^{2}+2 R r \cos \alpha+r^{2}\right)\right][-A B \cos \alpha+A m(R+} \\
r \cos \alpha)^{2} \cos \alpha+2 B^{2} \cos \alpha+B m\left(2 R^{2} \cos \alpha+2 R r+\right. \\
\left.\left.r^{2} \sin \alpha \cos \alpha\right)\right] \sin \alpha, M=B\left[B+m\left(R^{2}+2 R r \cos \alpha+\right.\right. \\
\left.\left.r^{2}\right)\right][B \cos \alpha+m(R \cos \alpha+r)(R+r \cos \alpha)] \\
N=-m g R\left[A B+A m(R+r \cos \alpha)^{2}+B m r^{2} \sin ^{2} \alpha\right] \cos { }^{2} \alpha
\end{gather*}
$$

is asymptotically stable (exponentially unstable). This is the equation of motion of a mechanical syntem with a single degree of freedom subjected to the action of disxipatr ive and potential forces. From this we immediately obtain the condition of stability (instability)

$$
\begin{equation*}
K \Omega^{2}+L \Omega \omega+M \omega^{2}+N>0 \quad(<0) \tag{5,4}
\end{equation*}
$$

of steady motion (5.1) in the form of the minimum (absence of minimum) of potential energy of system (5.3).

When $r=0$ condition (5,4) becomes the condition of stability of the steady motion of a hoop (see, e. g. , $[1,31$, when $\alpha=0$ and $\omega=0$ it becomes the condition of stability of a torus spinning about the vertical at constant angular velocity, and when $\alpha=0$ and $\Omega=0$ it becomes the condition of stability of uniform rolling of a torus along a straight line (see, e. g. , [3]).

REFERENCES

1. Rumiantsev, V. V. and Karapetian, A. V., Stability of motion of nonholonomic systems, Attainments of Science and Technology: General Mechanics, Vol. 3, Moscow, VINITI, 1976.
2. Emel'ianova, I. S. and Fufaev, N. A., On the stability of steady motions, Collection: Theory of Oscillations, Applied Mathematics and Cybernetics. Izd, Gor'kovak. Univ., 1974.
3. Neimark, Iu. L. and Fufaev, N. A., Dynamics of Nonholonomic Systems. Moscow, "Nauka", 1967.
4. Li apunov, A. M., Collected Works, Vol. 2, Moscow - Leningrad, Izd. Akad. Nauk, SSSR, 1956.
5. Malkin, I. G., Theory of Motion Stability. Moscow, "Nauka", 1966.
6. Metelitsyn, I. I., The problem of gyroncopic stabilization. Dokl. Akad. Nauk. Vol. 86, No. 1, 1952.
7. Merkin, D. R., Introduction to the Theory of Motion Stability. Moncow; "Nauka", 1971.
8. Lakhadanov, V. M., On the influence of structure of forces on the stability of motion. PMM, Vol. 38, No, 2, 1974.
9. Lakhadanov, V. M. , On stabilization of potential systems. PMM, Vol. 39, No. 1, 1975.
10. Karapetian, A. V., On the stability of nonconservative systerns. Vestn. MGU, Ser. Matem. Mekhan. , No. 4, 1975.
11. K a rapetian, A. V., On stability of equilibrium of nonholonomic systems, PMM, Vol, 39, No. 6, 1975.

Translated by J.J. D.

